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Abstract 
 
A core challenge in perception is recognizing objects across the highly variable retinal input 
that occurs when objects are viewed from different directions (e.g., front vs side views). It has 
long been known that certain views are of particular importance, but it remains unclear why. 
A philosophical and scientific debate has raged over whether object perception retains a 
‘perspectival’ aspect (1–5) whereby an object’s proximal appearance might influence 
perceptual judgments. We reasoned that characterising the computations underlying visual 
comparisons between objects could explain the privileged status of certain views, and 
potentially resolve the debate. We measured pose discrimination for a wide range of objects, 
finding large variations in performance depending on the object and the view angle, with front 
and back views yielding particularly good discrimination. Strikingly, a simple and biologically 
plausible computational model based on measuring the projected 3D optical flow between 
views of objects accurately predicted both successes and failures of discrimination 
performance. This provides a unifying account of why certain views have a privileged status, 
spanning both poles of the debate. Shifts between corresponding locations on objects are 
estimated in 3D, but are then projected into the image plane, leading to the observed 
‘perspectival’ effects in pose discrimination performance.  
 
 
Significance statement 
 
We show that qualitatively special viewpoints of 3D objects can be predicted by an optical-
flow model that measures how points on the surface shift in the image as viewpoint changes. 
This provides a unifying, quantitative account for why some viewpoints of objects are 
perceptually special, and provides a potential solution to the ongoing debate on whether our 
percepts of the 3D world have a perspectival aspect.  
  



Introduction 
When asked to imagine a familiar object, most people find themselves picturing the 

object from particular viewpoints that are especially informative or qualitatively distinct from 
other views (6). Yet, despite decades of research on visual object perception, fundamental 
questions remain about why certain views of objects are special. There is a confusing array of 
terms and ideas related to different kinds of views, including ‘canonical’ (7–11), ‘accidental’ 
or ‘non-accidental’ (12–14), ‘generic’ (15–17), or ‘cardinal’ (or being aligned along a cardinal 
axis (18–22)). There is also an ongoing debate about why and under which conditions 
perceptual tasks about 3D objects appear to be influenced by the perspectival aspects of the 
percept in the first place (1–5) —that is, whether the way an object appears in its 2D projection 
from a particular vantage point has an impact on perceptual judgments. 

Here, we sought a unifying framework for understanding the role of views in object 
perception. We show that a simple computational model, based on optical flow (4) can 
accurately predict the costs and benefits of viewing both familiar and novel objects from certain 
perspectives. The model provides a straightforward account of how the visual system 
determines which views of objects are particularly important. It also provides a principled 
explanation of how computations in both 3D and 2D contribute to perceptual judgments, thus 
potentially providing a way to unify opposing poles of the debate on the role of perspectival 
aspects in perceptual judgments. 

Several suggestions have been made about the role of viewpoints in object perception. 
For example, some viewpoints of an object might convey the most information about its overall 
identity and are the best views for object recognition (23). These tend to be the oblique views 
where the most surface of the object is visible (8, 24). Viewpoints that have the smallest width 
to length ratio are better for determining if an object has rotated slightly, and conversely the 
flat sides of objects are the most perceptually stable, or provide the least amount of visual 
change if the object were to rotate a little (25, 26). Viewing an object from one of these special 
viewpoints can benefit object recognition and recall (6, 7, 9, 11), and can bias inspection time 
of the object (27). People are also better at performing viewpoint discrimination tasks from 
some viewpoints. Previous work has attempted to quantitively define the transition between 
qualitatively distinct views (25) as “visual events,” and found that when an object is rotated 
across one of these visual events, discrimination performance is higher. Such discrimination 
benefits were found to be particularly strong for the front and back of familiar objects, 
particularly when the objects were symmetrical, and/or had orientation-specific features such 
as linear contours (26).  

We reasoned that we could use these geometric regularities in object viewpoint 
discrimination to provide a quantitative prediction of qualitatively distinct viewpoints, derived 
from the extent to which points on the object shift in the image when viewpoint (or 
equivalently, object pose) changes. To do this, we used a simple model inspired by optical flow 
computations (4). Specifically, the model assumes that given a pair of views of an object, the 
visual system: (1) identifies corresponding points on the objects’ surface across the two poses, 
(2) estimates the vectors in 3D between these corresponding points; (3) projects the vectors 
into the image plane from the current perspective and (4) takes the average length of these 
vectors as a measure of the difference between the two poses. We find that this approach 



provides a quantitative account of the differences between views and thus a unifying 
framework for understanding what makes certain object viewpoints qualitatively special.  
 
Results  
Experiment 1: viewpoint discrimination judgements  

We reasoned that if the proposed optical flow model can be used to unify previous 
qualitative findings on cardinal viewpoints, it should first be able to predict discrimination 
benefits at cardinal (front and back) versus non-cardinal (oblique) viewpoints (25, 26). In two 
online experiments, we collected human discrimination judgements for cardinal and non-
cardinal viewpoints for twenty-one photographs of real objects from the Amsterdam Library 
of Object Images (28), and thirteen rendered mesh objects (see Materials and Methods). In 
an initial object priming block, participants were shown a video of each of the objects rotating 
for four seconds, and were asked to report the direction of rotation. This task aimed to prime 
participants to think about the 3D rotational nature of the objects in the subsequent task. Results 
from this block were only used for participant exclusion (one participant for this criterion), and 
were not analysed further. In the subsequent object discrimination block, two viewpoints of the 
same object were displayed either side of a central cross for 500ms: the base viewpoint was 
either a cardinal or non-cardinal viewpoint, and the rotated viewpoint was offset from the base 
view by seven possible rotation levels (0, ±5, ±10, ±15 degrees rotation around the vertical 
axis). Participants indicated whether the two viewpoints were the same or different by clicking 
an onscreen button (Figure 1A).  
 

 
 
Figure 1. A) Participants first completed a priming task: each object rotated for 4 seconds; 
participants indicated rotation direction via button press. Participants then completed a pose 
discrimination task. Two viewpoints of an object were shown: the cardinal/non-cardinal 
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viewpoint, and a viewpoint offset by 0, +- 5, 10, 15 degrees rotation. Participants had to 
indicate whether the two viewpoints were the same or different. Photographed real objects and 
rendered mesh objects were tested in two separate experiments. B) Human discrimination 
performance for photographed (left) and rendered (right) objects. Pale lines: individual 
participants; bold lines: mean; error bars indicate standard errors. C) The cardinal axis effect 
for each object, rank ordered. This was calculated as the slope between performance at 0- and 
5-degrees difference. Real objects are depicted in light purple, mesh objects in dark purple. 
 

To analyse the responses, for each object and rotation level, we calculated the 
proportion of responses where participants indicated the two views were the same (Figure 1B). 
Results showed a striking difference in performance between cardinal versus non-cardinal axes 
for both the photographs of real objects, and the rendered mesh objects. A generalized least 
squares (GLS) regression model (performance ~ rotation_level (0, 5, 10, 15) * axis_type 
(cardinal, non-cardinal) * image_set (real, rendered)) demonstrated a significant effect of 
rotation level: F(1,536) = 734.76, p<0.0001; axis type: F(1,536) = 127.88, p<0.0001; and the 
interaction between rotation level and axis type: F(1,536) = 28.92, p<0.0001; but not image 
set: F(1,536) = 0.24, p = 0.63; and no other interactions were significant. This demonstrates 
that humans are better at discriminating objects rotated around cardinal versus non-cardinal 
axes for both real and rendered objects. These cardinal axes would therefore seem to be 
analogous to the “visual events” postulated by Tarr and Kriegman (25).  

The results also showed that there was some variability in performance between objects. 
To quantify the discrimination benefit for cardinal vs non-cardinal axes for a particular object, 
we calculated the “cardinal axis effect” as the difference in the slope between “response 
different” judgements for 0- and 5-degree rotation levels for cardinal vs non-cardinal axes. The 
higher the slope for an object/axis, the more discriminable it is. Figure 2C shows that the 
cardinality effect was stronger for some objects than others, for both real and mesh objects, 
with 32/34 objects showing a perceptual discrimination benefit for cardinal versus non-cardinal 
viewpoints. This variability in the cardinal axis effect allowed us to use a model to investigate 
to what extent we could predict the cardinal axis effect for each object, and whether features 
of our model predictions might predict the magnitude of this effect.  
 
Optical flow model predicts cardinal viewpoints  
 We used an optical flow model to compute viewpoint dissimilarity for every viewpoint 
around each object. In brief, the model measures how much points on objects shift in the image 
as the viewpoint changes. Specifically, given a pair of poses of an object, we compute the 3D 
vectors between corresponding surface points, and then estimates the mean length of these 
vectors when projected into the 2D image plane. This model has been shown to capture 
viewpoint-related variations in mental rotation (Stewart et al 2022), and we reasoned that it 
may be able to predict both cardinal and non-cardinal axes within objects, as well as the relative 
degree of the cardinal axis effect across objects. For each of the 72 rendered viewpoints, we 
calculated the ground-truth optical flow vectors produced as the object rotated towards the next 
viewpoint. The model prediction for this viewpoint was taken as the mean of the absolute 
length of these vectors (see Stewart et al for further details). We thus obtained an “optical flow 
curve” for each object (Figure 2). We calculated the gradient of this flow curve at the tested 



viewpoints, and the slope of the curve between the tested base viewpoint (front, back, non-
cardinal) and each offset viewpoint. Different objects had different optical flow curve profiles, 
and in particular varied in the range of the curve. We therefore also calculated the range (max-
min) of the curve for each object.  
 

 
Figure 2. A) Optical flow model. For each view of each mesh object, the optical flow was 
calculated between that view and the next view, resulting in an optical flow curve (left, middle). 
Left top and bottom show example optical flow output for the Front and Non-cardinal axes of 
one object (pink indicates rightwards motion, green, leftwards). Right panel shows optical flow 
curves for each object, with front, back, and non-cardinal viewpoints of each object. B) 
Comparison of the gradient of cardinal versus non-cardinal axes on the optical flow curve. 
Dots represent individual objects. The pink shaded area represents objects where the optical 
flow gradient was lower for cardinal than non-cardinal axes. C) The cardinal axis effect 
(difference in slope between 0 and 5 degrees offset, as in Figure 1C) was predicted by the 
gradient difference between cardinal and non-cardinal axes on the optical flow curve. D) The 
cardinal axis was predicted by the range of the optical flow curve. 
 
The gradient of the optical flow curve predicted cardinal versus non-cardinal axes, with 
cardinal axes having a lower gradient than non-cardinal axes (t(12) = -4.58, p=0.0006, Cohen’s 
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D = 1.27 (large effect size), Figure 2AB). The optical flow model could also predict human 
discrimination performance in two ways. We first looked at whether the cardinal axis effect 
could be predicted by the gradient of the optical flow curve (Figure 2C). A simple linear 
regression model revealed that the model gradient accurately predicted the human 
discrimination performance (F(1,50) = 14.09, p = 0.00045). Second, we tested whether the 
cardinal axis effect could be predicted by the difference in gradient (Figure 2D), and by the 
magnitude of optical flow change across the entire optical flow curve (range of the curve). A 
linear regression model (cardinal_axis_effect ~ gradient_difference + curve_range) again 
showed a significant effect of gradient difference (F(1,49) = 9.62, p = 0.0032) and curve range 
(F(1,49) = 56.2, p<0.0001). These results indicate that the gradient of the optical flow curve is 
predictive of whether a viewpoint is cardinal or not, providing for the first time a 
straightforward quantitative predictor for these qualitatively special views of familiar objects.  
 
Experiment 2: the front of novel objects 
 The objects tested in Experiment 1 were all easily recognizable objects, and factors 
such as familiarity and the geometric properties of the shapes themselves (e.g., symmetry, 
elongation), might have influenced performance. Thus, while model predictions correlated 
with the cardinal axis effect for symmetrical, elongated, real objects, the findings may not 
generalise to novel objects with less regular elongation and symmetry (12). We therefore 
created ten non-meaningful mesh objects with both regular and irregular optical flow curves, 
and in an online experiment verified that these objects were on average rated as non-familiar 
(see Methods and Materials for details of object-familiarity ratings). Objects were created to 
have varying levels of symmetry and elongation, and to have a more heterogenous pattern of 
optical flow predictions than the familiar objects in Experiment 1. We then conducted a 
separate online experiment, and asked a new sample of fifty online participants to rotate each 
of the ten novel objects, plus four of the familiar mesh objects from the previous experiment 
(pig, duck, small car, figure), so that the front of the object was facing toward the participant. 
For each object, we examined where the responded “front” angles lay on the optical flow 
prediction curve. In general, responses tended to cluster around the peaks and troughs of the 
optical flow curve (Figure 3), and on average the viewpoints that were indicated as being a 
“front” had lower gradients than the viewpoints that were never indicated as being the front 
(Wilcoxon test z = 2, p = 0.00037, r = 0.54; strong effect size). This demonstrates that, while 
there is naturally more variability in where the actual front of the object is considered to be, 
even for novel, non-symmetrical objects, the optical flow model was predictive of which 
viewpoints may be considered to be candidate “front” views of these objects.   
 



 
Figure 3. A) Tested novel objects (top) with the corresponding optical flow curve (bottom). 
Novel objects are shown from the viewpoint with the highest number of “front” responses. 
Individual points on the curve represent viewpoints that were marked as the “front” of the 
object. B) Scatter plot representing for each object the mean gradient across participants at 
viewpoints selected as “front” compared to viewpoints that were not selected as “front”. Novel 
objects are represented in purple, and the four familiar objects tested are shown in blue for 
comparison. The shaded pink area represents where the viewpoints selected as “front” have a 
lower gradient than non-front viewpoints.  
 
General discussion 
Our results suggest that the optical flow model can explain variability in viewpoint 
discrimination and identify qualitatively distinct viewpoints. Participants were better at 
discriminating between two viewpoints separated by 5 degrees rotation, when one of those 
viewpoints was a so-called cardinal axis, compared to when an oblique view of the object. The 
magnitude and variability in this perceptual discrimination advantage could be predicted by the 
gradient of an optical-flow model that computes the magnitude of the 2D displacement vectors 
that would be produced if the object were to rotate from one viewpoint to the next. Remarkably, 
this model could also predict viewpoints that were more likely to be labelled as “front” for 
novel, unfamiliar objects. This model can therefore capture quantitative geometrical 
relationships between viewpoints and predict which viewpoints stand out as particularly 
significant for the observer. Our findings suggest the method works for familiar, unfamiliar, 
regular, and irregular objects. As Figure 4 shows, viewpoints that may be considered the most 
discriminable (front, back), most stable (sides), and “typical”, “generic” or “representative” 
(oblique; see Supplementary Materials) can be constrained using the model output curve 
(optical flow value/predicted perceived dissimilarity), and the gradient of this curve. Thus, a 
simple, quantitative account based on the projected spatial shifts of visible surface points 
provides a unifying framework for object viewpoint perception.   
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Figure 4. This model can quantitatively predict and constrain which viewpoints of a 3D object 
are qualitatively meaningful using the predicted dissimilarity curve, and the gradient of this 
curve.  

 
It is likely that geometrical regularities across natural objects contribute to a form of 

statistical learning about object geometries. For example, in most quadrupedal animals, the 
front and back of the animal is narrower and more symmetrical than the side-on view. While 
such statistical learning about object categories and identity may account for familiarity effects 
in object recognition (8), learning about the geometry of objects may also aid in identifying 
important viewpoints for unfamiliar objects. The results of Experiment 2 suggest that 
participants may extrapolate learned geometrical regularities of cardinal viewpoints 
experienced in the real world, and use these statistical regularities to determine the cardinal 
viewpoints of novel objects. As with many other object features (29–33), the visual system 
seems to use knowledge of objects in the world to form priors about (34), or estimate latent 
variables underlying (35) the proximal information about the geometry of distinctive object 
viewpoints. 

These results also reflect findings that object recognition from rotated viewpoints is 
more dependent on 2D distance between object features than the 3D angular distance (10). 
Interestingly, in this experiment, even though participants were primed on the 3D nature of the 
stimulus by being shown the object rotating in space, the 2D model is still predictive of human 
performance, and reflects previous findings that a 2D representation may underpin 3D 
viewpoint discrimination (4). In Experiment 2, the selection of the “front” viewpoint compared 
to all other viewpoints arguably requires a 3D representation of the object as a whole, yet even 
in this case responses corresponded to geometric regularities predicted by the 2D model. As a 
result, the model provides a route into understanding the origin of putative effects of the 
‘perspectival’ appearance of objects (2)—such as the perceived ‘elliptical nature’ of a coin seen 
slanted in depth—in the context of theories of vision that assume perceptual constancies (36–
39). Specifically, we suggest that even when 3D object structure is estimated perfectly, 
comparisons between objects are made in terms of the estimated or predicted changes in the 
proximal stimulus involved in transforming one view to another. We speculate that 
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representations that express changes in terms of proximal stimulus quantities are particularly 
useful in learning to see a 3D object in the absence of ground-truth data about its physical state.  
Specifically, we suggest that learning to accurately predict changes in the proximal stimulus 
teaches the visual system deep knowledge about the distal forms that produce such changes 
(35, 40). Thus paradoxically, retaining a representation of ‘perspectival aspects’ of objects may 
be a key step in learning to see them as 3D in the first place. This hints at a potential resolution 
to the debate about the role of perspectival aspects in perception (1–5). More fundamentally, it 
suggests that humans use proximal information about an object’s geometry to make judgements 
about an object’s pose, and more importantly, use this information to learn regularities about 
qualitatively special viewpoints.  
 
Materials and methods 
 
Participants 
300 participants completed the study in total. Experiment 1 real objects: 50 participants (24 
female; age range 19-59, mean age 29.9 (SD 1.3)), Experiment 1 rendered mesh objects (N = 
50, female = 27, undisclosed sex = 1, mean age = 31.4 (SD 10.4)). Experiment 2 familiarity 
ratings 1 (N = 50, 18 female, mean age = 27.8 (SD 5.9)); familiarity ratings 2 (N = 50, 16 
female, mean age = 27.9 (SD 8.5)). Experiment 2 front judgements: 50 participants (N = 50, 
19 female, mean age = 30 (SD 8.7)). Experiment 2 representative judgements: 50 participants 
(N = 50, 28 female, mean age = 41.9 (SD 12.7)). Participants participated online, and were 
recruited through Prolific. Experiments were approved by the University of Marburg local 
ethics committee (approval number 2015-35k), and University of Giessen local ethics 
committee (approval number 2020-0033), and were conducted in accordance of the Declaration 
of Helsinki (1964).  
 
Stimuli 
Experiment 1 – photographed real objects 
Photographed real objects were taken from the Amsterdam Library of Object Images (ALOI) 
(28). This library contains 1000 photographs of real-world images, photographed from 72 
viewpoints separated by 5 degrees of horizontal rotation. In a previous study, we collected 
human judgements about which viewpoints of these objects corresponded to a number of axis 
labels (front, back, left, right, prototypical; see (41) for details on data collection). This data 
gave us a distribution of angular responses for each axis label for each object. For this study, 
we chose 21 objects that had clearly defined cardinal viewpoints: for each object and viewpoint 
label, we calculated the mean resultant length of participant responses, and used this to select 
objects where there was high agreement between participants for all cardinal viewpoints. The 
cardinal viewpoint for a specific label was then taken as the circular mode of the responses for 
that label. Non-cardinal viewpoints were taken as those that were midway between two cardinal 
viewpoints (i.e., front and left), but were not reported to be the prototypical or any other 
viewpoint. 
 
 
 



Experiment 1 – rendered mesh objects 
We repeated the experiment with mesh objects so that we could apply the mesh-based optical 
flow model. We selected 13 mesh objects that were as similar as possible to the original ALOI 
objects in both shape and semantic meaning. Meshes were either freely available online or 
selected from Evermotion (https://evermotion.org). These meshes were rendered in Blender 
(42) from 72 viewing angles separated by 5 degrees horizontal rotation, using analogous 
lighting and camera distance as the ALOI objects (28). For these objects, the front was defined 
by the researchers (and was analogous to the front of the photographed objects), and the same 
angular rotations relative to the front as in the photographed objects were used to define non-
cardinal viewpoints. Objects were rendered in pretty colours chosen by the researcher. 
 
Experiment 2 
We created thirty semantically non-meaningful mesh objects using Mathematica and Blender 
(42), and chose the ten most unfamiliar (see procedure for details) These objects were rendered 
from the same viewing angles, with the same lighting conditions as in Experiment 1. The four 
familiar objects from Experiment 1 were re-rendered in the same colour as the unfamiliar 
objects.    
 
Procedure 
Experiment 1  
Experiment 1 (photographed real objects) was pre-registered at as.predicted.org (#67124), and 
the experiment using the rendered mesh objects followed the same protocol. The experiments 
were conducted online and programmed with custom-written software using JsPsych (43). 
Each participant completed both an object priming and a perceptual discrimination task. The 
object priming task aimed to familiarise participants with the 3D nature of the objects, and to 
prime them to think about the objects rotating through viewpoints. Participants viewed a video 
of each object rotating through 360 degrees for a duration of four seconds, either clockwise or 
counter-clockwise. Participants had to indicate the direction of rotation via button-press. 
Participant responses to the priming task were only used for excluding participants and were 
not analysed further. In the perceptual discrimination task, participants were presented with 
two views of an object on either side of a central fixation cross, for 500ms. They then indicated 
via button press whether the views were the same or different. These views were defined by 
four conditions, tested in two separate experiments. Experiments 1 and 2 (part 1): front  ± 0, 5, 
10, 15 degrees; non-cardinal angle 1 ± 0, 5, 10, 15 degrees. Experiments 1 and 2 (part 2): back 
± 0, 5, 10, 15 degrees; non-cardinal angle 2 ± 0, 5, 10, 15 degrees. Every participant saw all 
objects at both cardinal and non-cardinal viewpoints, with randomized viewpoint offset 
difference levels.  
 
Experiment 2 
Familiarity ratings. To choose Participants saw a video of each object rotating, and indicated 
how familiar they found the object to be, using a 6-point slider ranging from “very unfamiliar” 
to “very familiar”. The video looped to give the appearance of a continuously rotating object 
until a response was given. Four of the objects from experiment 2 were included as catch and 



comparison trials (pig, car, figure, duck). Mean familiarity ratings were calculated, and objects 
were rank-ordered by familiarity We chose 10 objects for the cardinal axis rating task, 
accounting for low familiarity ratings, and varying levels of symmetry shape of the optical flow 
curves. To confirm that the ten novel objects we created were perceived as being unfamiliar, 
we ran a second online experiment with the same procedure, where participants only saw the 
ten most unfamiliar objects, and the four familiar objects (see Supplementary Materials). 
Cardinal axis ratings. In an online experiment, participants were instructed to rotate each 
object using the left and right arrows on the keyboard until the object was facing toward the 
“front”.  
 
Exclusions 
In Experiment 1, trials were excluded if the reaction time was less than 300ms or more than 
5000ms or if performance was less than 75% correct on either the training or main task. In 
Experiment 2, for the familiarity ratings, trials were excluded if the reaction time was less than 
300ms or more than 5000ms, or if they rated any of the real objects (pig, figure, car) as having 
a familiarity rating of less than three out of six. For the front ratings, trials were excluded based 
on the same reaction time criteria, and additionally if the “front” response of familiar objects 
was not within 45 degrees of the veridical front. 1.2% of trials were excluded for Experiment 
1 (photographed real objects) and 1.19% for the rendered mesh objects. For Experiment 2 
(familiarity ratings) no trials were excluded; for Experiment 2 (front ratings), 3 participants 
were excluded, and no trials were excluded from the remaining participants.  
 
Analyses 
Model 
We used a ground-truth optical flow computation (Stewart et al, 2022), which has previously 
been found to predict human performance for viewpoint dissimilarity judgements for block-
sequence 3D rendered objects. The model predicted the amount of 2D optical flow information 
that would be produced as the object rotated by 5 degrees from one viewpoint to the next, by 
calculating the mean of the absolute horizontal and vertical displacements of every visible 
vertex in the underlying object mesh. Displacements for vertices visible from one viewpoint 
but not the rotated viewpoint (unmatched points) are not included in model calculations. 
 
Cardinal axis effect 
To calculate the cardinal axis effect, we only took the slope of performance difference between 
0- and 5-degree displacements for the following reasons: 1) this is the most difficult 
discrimination level we tested; 2) larger discrimination levels (especially 15-degree become 
trivial); 3) there’s not necessarily a linear increase in performance between 0,5-,10-, and 15-
degree displacements. For some objects there is a very small performance difference between 
0- and 5-degree displacements; and for others there is a larger difference in performance. Such 
between-object differences in sensitivity to small displacements are lost if larger displacements 
are included in the cardinal axis effect calculations.  
 
 
 



Statistical analyses 
All statistical analyses were conducted in R. Linear regression models were conducted using 
base R. Generalized least squares (GLS) models were conducted using the package nlme (44), 
and were implemented where a linear model would otherwise have a heterogonous variance 
across different levels of a factor. Model comparisons were used to determine the best-fitting 
variance structure (different variance allowed for different factor levels).  
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